マルチホップネットワークでノードの類似度を用いた クラスターヘッド選択アルゴリズム

大沢 恭平1 串田 高幸1

概要:広範囲なエリアで行われる環境モニタリングでは,複数の IoT デバイスを経由してサーバーまでセンシングデータを送信する,マルチホップネットワークが用いられる.マルチホップネットワークで使用される IoT デバイスはバッテリー駆動であり,搭載されるバッテリーは小型なものである.したがって,小型のバッテリーでデバイスを長時間動作させるにはノードの省電力化が課題となる.本稿では MVED プロトコルを提案する. MVED プロトコルは消費電力量をノード間で分散し,平滑化することで孤立ノードの発生を遅らせることを目的としている.実験では,バッテリー容量が1,000[mAh] である5台のノードを用いて既存手法の LEACH プロトコルと MVED プロトコルでの消費電力量を測定した.5台のノードの稼働時間を測定し,LEACH プロトコルの標準偏差が約5,326[sec] であったのに対し,MVED プロトコルでは約2,024[sec] と,約62[%] の改善が見られた.

1. はじめに

背景

マルチホップネットワークはヘルスケア、軍事、農業の 分野で使用される [1]. 農地の環境モニタリングでは、セン サーノードは気温,湿度,土壌湿度,監視画像データの収 集を行う.これらのデータは農地の環境整備、作物の成長 分析,病害虫の発生予測に利用される [2]. センサーネット ワークは複数の小型 IoT デバイスのノードで構成され、そ れぞれのノードはバッテリーが搭載されている. センサー ノードのサイズの制約に伴ってバッテリーサイズも制限さ れるため、ノードは限られた電力で動作する必要がある. したがって、バッテリー消費を最適化することは重要な課 題である [3]. マルチホップネットワークはシングルホップ 通信と比較して広範囲のセンシングに適している. 遠隔地 にあるサーバーにセンシングデータを保存するために、各 センシングノードはサーバーまで他のノードを中継してセ ンシングデータを送る必要がある.短距離のマルチホップ を行うことで、ノード間の通信距離の短縮と消費電力量の 削減ができる. したがって, マルチホップ通信はノードの 消費電力量削減に効果的な手法である [4]. クラスター化さ れたネットワークにおいて、複数のノードから受信したセ ンシングデータを集約し,次の中継ノードに送信するノー

ドをクラスターヘッド (Cluster Head: CH) と呼び,中継 を行わないノードをクラスターメンバー (Cluster Member: CM) と呼ぶ [5,6]. クラスターヘッドは多くのノードから の通信を行うこと,送受信するデータサイズが大きいこと から,クラスタメンバーと比較して消費電力量が多くなる.

課題

課題は,クラスターヘッドがバッテリー枯渇によって停止することによる孤立ノードの発生である [7]. 孤立ノー ド発生の例を図1に示す.

クラスターヘッドとして動作するノードの消費電力量は クラスターメンバーノードの消費電力量よりも多いこと から、クラスターヘッドのバッテリーは早く枯渇する.マ ルチホップネットワークでは、センシングデータの中継を 行うクラスターヘッドが動作を停止すると、他のノードに 影響が及ぶ.例えば、図1中のクラスターメンバーである CM2-1と CM2-2 は、クラスターヘッドである CH2 を中 継してサーバーにセンシングデータを送信する.CH2 が バッテリー枯渇によって停止するとデータの中継先が無 くなり、センシングデータの送信ができなくなる.CM2-1 と CM2-2 は孤立ノードとなっている.クラスター内の全 てのノードがサーバーと通信できなくなると、孤立クラス ターと呼ばれる.バッテリーが十分に残っているにも関わ らず、孤立ノードとなったノードのバッテリーを有効活用 できていない.

 ¹ 東京工科大学大学院バイオ・情報メディア研究科コンピュータサイエンス専攻
〒 192-0982 東京都八王子市片倉町 1404-1

図1 孤立ノードの発生

各章の概要

2章では、本稿の関連研究について記述する.3章では、 本稿の提案方式について記述する.4章では、実装の内容 について記述する.5章では、評価実験の実験環境、実験 結果と分析について記述する.6章では、提案方式につい ての議論を記述する.7章では、本稿のまとめを行う.

2. 関連研究

ノードをクラスターにグループ化し、クラスターヘッ ドをランダムに選択することでノードの消費電力量を分 散させる先行研究がある. LEACH(Low Energy Adaptive Clustering Hierarchy protocol) はその代表的なプロトコル の一つである [8]. LEACH はクラスターヘッドの選択に確 率的なアプローチを採用し、各ラウンドごとにクラスター ヘッドが変更される. ノードが交代でクラスターヘッドに なることで消費電力量をノード間で均一にしている.ク ラスターヘッドは TDMA(Time Division Multiple Access) を使用してクラスターメンバーにセンシングデータの送 信権限を与える. センサーノードは指定されたタイミング でセンシングデータを送信するため,他のノードとの電波 干渉や競合が抑えられるというメリットがある.ただし、 ノード間で同期をとる必要がある. LEACH は全てのノー ドがサーバーと通信できることを前提としている. 実際に はノードの通信範囲は限られているため、マルチホップ 通信を必要とする広域での通信には適していない. また, LEACH プロトコルはセンシングエリア内に多数のノード が配置されている場合に最も有効な手段である. それゆえ, ノード数が少数である場合には効果を発揮しない [9,10].

ICIC アルゴリズムでは, マルチホップネットワークに おいて伝送距離の最も短い経路を選択してデータの送信を 行うことでノードの消費電力削減を行っている.この手法 で考慮されているのは経路選択までである.したがって, 通信方法にさらに改善の余地がある [11].

シンクノードを複数配置,またはシンクの再配置によっ て伝送距離を短くし,センサーノードの消費電力削減を 行っている.この手法は地理的,経済的制約の面で課題が ある [12].

HEED はエネルギー効率の高い CH を選出するアルゴリ ズムである.初期段階として,各ノードはエネルギー量情 報を保持している.各ノードは自身の残存エネルギー量と 隣接ノードとの通信距離からクラスターヘッドとしての適 正を計算する.各ノードは,計算によって求めた値が閾値 より高い場合,クラスターヘッドを担う.このアルゴリズ ムでは,隣接ノードとの通信が必要なため,ノード数の多 い環境ではクラスターヘッド選出に大きな通信コストがか かる.また,クラスターサイズを均等に分割できるという 条件がある [7,8,13].

3. 提案

提案方式

本提案手法は各ノードのバッテリー残量を平滑化し、ネットワークの動作時間を延長することを目的とする. バッ テリー残量と接続可能ノード数からスコアを算出し、次 回のクラスターヘッドを選出す, MVED(Multi-Variable Energy Distributed algorithm)を提案する. なお、本提案 方式では、以下の項目を前提条件として設定する.

- リンクは固定とし,変更されることはない.
- サーバーは1台である.
- サーバーは、各ノードが接続可能なノードのリストを あらかじめ保持している。
- データの取得頻度,送信頻度はすべてのノードで同一とする.
- 各通信において全てのノードからデータを受信可能な クラスターヘッドの配置でなければならない.

図2は初期のネットワークトポロジーを示している.各 ノードが接続可能なリンクはあらかじめ固定され,ハード コーディングされたものである.本提案方式では,図2中 の Cluster Head ノードがクラスターヘッドの候補であり, この中から1台クラスターヘッドとして選出する.つまり, 各 Cluster Head 候補ノードは自身に所属しているリーフ ノードからセンシングデータを受信し,5台から選出され た別のクラスターヘッドにセンシングデータを転送する. 主なアルゴリズムのステップは以下に示す.

ノード情報収集

各ノードは現在のバッテリー残量と接続可能ノード数を 測定,取得し,クラスターヘッドに送信する.クラスター ヘッドは全てのノードから情報を収集し,この情報を次の クラスターヘッド選択に使用する.

正規化

図2 初期トポロジー

各ノードから収集されたバッテリー残量情報と接続可能 ノード数情報は正規化される.正規化は2つのパラメータ を同じスケールで比較するために使われる.正規化は以下 の式から0-1の範囲で算出される.

Normalized Value = $\frac{\text{Current Value} - \text{Min Value}}{\text{Max Value} - \text{Min Value}}$ 本稿では、バッテリー残量 b($0 \le b \le 100$) と接続可能 ノード数 n($0 \le n$) であり、2 値のスケールが異なるため、 正規化を行う必要がある.

類似度 (スコア) 算出

それぞれのノードについて,正規化されたバッテリー残量 と接続可能ノード数の値から類似度スコアが算出される. スコアは,クラスターヘッドに適正のあるノードほど低い 値となる.スコアは以下の式から算出される.

$$Sim_score(i,j) = \sqrt{(p * (b_i - b_j))^2 + (p * (n_i - n_j))^2}$$
(1)

クラスターヘッド選出 ユークリッド距離の値は2点が類似しているほど小さくな る.したがって,最も低いスコアを持つノードが次回のク

ラスターヘッドとして選出される.

ユースケース・シナリオ

本稿で提案する手法は農地での環境モニタリングへの応 用を想定している.農地に設置された IoT デバイスを用い た環境モニタリングでは,農場の環境および作物の効率的 な管理を目的として,気温,土壌湿度,水量,光量,風量. 作物の画像データを取得する.これらのデータは,数値情 報が適切な灌水タイミングの判断に役立ち,画像データは 病害虫の発生や予兆の検出に活用される.図3は,本手法 のユースケースを示している.

図3 ユースケース

図3に示されるように、本システムでは農地に配置された IoT デバイスが環境データを収集し、マルチホップネットワークを利用して複数のノードを介しながらサーバーへデータを送信する.その後、サーバーに蓄積されたデータはユーザーによって可視化され、必要な防除の判断材料として利用される.

具体的な IoT センサーを用いたセンシングソリューショ ンの例として、ワイン用ブドウの品種であるカベルネ・ソー ヴィニョンの栽培農園が挙げられる.このような農園で は、短時間での気候変化に迅速に対応し、防除対策を適切 に行うことが求められる.特に、急激な温度変化はブドウ の成長に悪影響を及ぼす病原菌の発生を招く可能性がある ため、リアルタイムでの環境監視とデータ解析が重要とな る.山梨県にあるカベルネ・ソーヴィニョン農家では、カ メラや温度センサーを搭載した IoT デバイスを用い、10 分 ごとにデータを取得し、無線ネットワークを介して収集し ている.

本稿の提案手法を導入することで,バッテリーやソー ラーパネルによる電力供給で動作する IoT システムを農場 に展開できる.また,Wi-Fiを使用することでデータ送信 時の通信速度を確保しつつ,モバイルネットワークを利用 するよりも低コストでの運用が可能となる.

4. 実装

提案手法のソフトウェア実装について説明する.本実 装では、データの受信、類似度の計算、クラスターヘッド (CH)の選出を行うノードとして ESP32 を使用した.ま た、消費電力の計測には、電流センサー INA219 を使用し た.図4に ESP32 とサーバーの構成を示す.

類似度計算

提案方式のユークリッド距離の計算を行い,ノードごと のスコアを計算する.スコアを元に,次のクラスターヘッ

図4 ソフトウェア構成図

ドの選出を行う.

データ送信,受信

ノード間の通信にはソケット通信を用いる.クラスター メンバーはクラスターヘッドに対し,自身のバッテリー残 量,接続可能ノード数の情報を送信する.クラスターメン バーはレスポンスとして,次回のクラスターヘッドのノー ド情報を受け取る.

電流計データ取得

消費電力の取得には電流計センサーの INA219 を用いる. 測定した値からノードのバッテリー残量を計算する.

5. 評価実験

実験環境

実験では,ノードとして ESP32 を 5 台使用した.すべ てのノードは消費電力量を計測するために INA219 を搭載 している.ノード間の通信間隔は 5[sec] である.各ノード のバッテリー容量は 1000[mAh] に設定した.表 1 に実験 環境を示す.

台数	5	
通信間隔	5[sec]	
バッテリー容量	1000[mAh]	
ノード間距離	約 1[m]	
通信規格	Wi-Fi	
表 1 実験構成		

既存手法として LEACH プロトコルを用いたクラスター ヘッド選出を行う.毎通信後に, pythonのrandom モジュー ルを使用して疑似乱数生成を行い,次のクラスターヘッド を選出する.提案手法として MVED プロトコルを用いた クラスターヘッド選出を行う.

実験結果と分析

LEACH プロトコルと MVED プロトコルでの実験にお ける,バッテリー残量の推移を図 5 と図 6 に示す.また, 各項目についての計測結果を表 2 にまとめる.

図 5 LEACH 消費電力

図5において, LEACH プロトコルでは, 各ノードのバッ テリー残量にばらつきが見られた. ノード b が最長の稼働 時間を記録し, 40,490[sec] 間稼働した. 一方, ノード d が 最短の稼働時間を記録し, 稼働時間は 27,721[sec] であっ た. 各ノードの平均稼働時間は約 31,176[sec] で, 最長ノー ドと最短ノードの差は 12,769[sec] であった. 標準偏差は約 5,326[sec] であった.

この結果で見られたバッテリー残量のばらつきにより, クラスターヘッドの早期の停止が発生し,孤立ノードの発 生が増加した.図7は孤立ノードの数の推移を表す.稼働 時間が最長ノードと最短のノードの稼働時間差は,クラス ターヘッドの停止によって孤立ノードを抱えたままネッ トワークが稼働している時間と同義であり,全稼働時間 (40,490[sec])のうち孤立ノードを抱えたまま稼働している 時間の割合は約 32[%] であった.

図 6 MVED 消費電力

図6において, MVED プロトコルでは, LEACH と比較して各ノードのバッテリー残量のばらつきは小さかった. ノード a が最長の稼働時間を記録し, 35,112[sec] 間稼

働した.一方,ノード d が最短の稼働時間を記録し,稼働 時間は 29,920[sec] であった.各ノードの平均稼働時間は約 33,956[sec] で,最長ノードと最短ノードの差は 5,192[sec] であった.標準偏差は約 2,023[sec] であった.

図6より, MVED プロトコルのクラスターヘッド選出 によるバッテリー残量のばらつきは LEACH プロトコル と比較して小さいことがわかる.図7より,全稼働時間 (35,112[sec])のうち,孤立ノードを抱えたまま稼働してい た時間の割合は約15[%]であった.

	LEACH	MVED
最長	40,490[sec]	35,112[sec]
最短	27,721[sec]	29,920[sec]
差	12,769[sec]	5,192[sec]
平均	約 31,176[sec]	約 33,956[sec]
標準偏差	約 5,326[sec]	約 2,023[sec]
孤立ノードがある	約 32[%]	約 15[%]
時間の割合		

表 2 LEACH, MVED 実験結果

図 7 は孤立ノードの台数の推移を図 5 と 6 から抜粋し, 比較したのもである.全てのリーフノードが孤立ノードに なる時間は MVED の方が早いが,LEACH では,全ての リーフノード (17 台) のうち 14 台を早期に孤立ノードにし ている.

6. 議論

本稿の提案手法である MVED はユークリッド距離を用 いたスコアの算出をノードで行っている.大規模ネット ワークでは,計算量の増大に伴い,消費電力も増加するた め,サーバーで計算処理を行うことでノードへの負担を減 らす必要がある.また,現在はスコア計算時の"バッテリー 残量"と"接続可能ノード数"の重みが同じであるため,各 値の重みを調整することでさらにバッテリー残量の平滑化 が可能である.

LEACH プロトコルのクラスターヘッド選出はランダム

に行われるため、本稿の実験で得られた結果より良い結果 にも悪い結果にもなり得ることに注意が必要である. 今後 は、LEACH プロトコルでの実験数を増やすことで平均的 な性能を測り、MVED との性能比較を行う必要がある.

ノード間距離によって、本稿のトポロジーのようにクラ スターヘッド候補ノード同士で接続できないシチュエー ションが考えられるが、ネットワーク内でクラスタリング を行うことで動作させることが可能である.ただし、マル チホップ通信を行うためにそれぞれのクラスターで最低1 台ずつ他のクラスターと通信できるノードが存在すること が必要である.

7. おわりに

本稿ではバッテリー残量と接続可能ノード数から各ノー ドのスコアを算出し、そのスコアを元にクラスターヘッド の選出を行う MVED プロトコルを提案した.実験結果よ り、MVED プロトコルはノード間の消費電力量を平滑化 し、孤立ノードが発生するまでの時間を延ばすことが示さ れた.各ノードの平均稼働時間は、LEACH プロトコルで 約 31,176[sec],MVED プロトコルで約 33,956[sec] であっ た.また、全稼働時間のうち孤立ノードを抱えたままネッ トワークが稼働している時間の割合は LEACH プロトコ ルと MVED プロトコルでそれぞれ約 32[%] と約 15[%] で あった.LEACH プロトコルの標準偏差が約 5,326[sec] で あったのに対し、MVED プロトコルでは約 2,024[sec] と、 約 62[%] の改善が見られた.

参考文献

- Ahlawat, B. and Sangwan, A.: Energy Efficient Routing Protocols for WSN in IOT: A Survey, 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), Vol. 1, pp. 380–385 (online), DOI: 10.1109/COM-IT-CON54601.2022.9850649 (2022).
- [2] Arora, S., Nijhawan, G., Verma, G. and Patel, R. J.: A systematic survey on various energy harvesting systems for WSN applications, 2021 International Conference on Industrial Electronics Research and Applications (ICIERA), pp. 1–5 (online), DOI: 10.1109/ICIERA53202.2021.9726530 (2021).
- [3] Abraham, J. A. and Felix Arokya Jose, A.: Literature Survey on Reliable event detection in WSN using aggregation of data, 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), pp. 841–843 (online), DOI: 10.1109/IC-CMC.2018.8488027 (2018).
- [4] Pešović, U. M., Mohorko, J. J., Benkič, K. and Čučej, Ž. F.: Single-hop vs. Multi-hop–Energy efficiency analysis in wireless sensor networks, 18th telecommunications forum, TELFOR (2010).
- [5] Izadi, D., Abawajy, J. and Ghanavati, S.: An Alternative Clustering Scheme in WSN, *IEEE Sensors Journal*, Vol. 15, No. 7, pp. 4148–4155 (online), DOI: 10.1109/JSEN.2015.2411598 (2015).
- [6] Kumrawat, M. and Dhawan, M.: Survey on clustering al-

gorithms of wireless sensor network, *International Jour*nal of Computer Science and Information Technologies, Vol. 6, No. 3, p. 2046 (2015).

- [7] Leu, J.-S., Chiang, T.-H., Yu, M.-C. and Su, K.-W.: Energy Efficient Clustering Scheme for Prolonging the Life-time of Wireless Sensor Network With Isolated Nodes, *IEEE Communications Letters*, Vol. 19, No. 2, pp. 259–262 (online), DOI: 10.1109/LCOMM.2014.2379715 (2015).
- [8] Omari, M. and Laroui, S.: Simulation, comparison and analysis of Wireless Sensor Networks protocols: LEACH, LEACH-C, LEACH-1R, and HEED, 2015 4th International Conference on Electrical Engineering (ICEE), pp. 1–5 (online), DOI: 10.1109/INTEE.2015.7416826 (2015).
- [9] Shih, E., Cho, S.-H., Ickes, N., Min, R., Sinha, A., Wang, A. and Chandrakasan, A.: Physical Layer Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks, *Proceedings of the 7th Annual International Conference on Mobile Computing and Networking*, MobiCom '01, New York, NY, USA, Association for Computing Machinery, p. 272–287 (online), DOI: 10.1145/381677.381703 (2001).
- [10] Song, L., Song, Q., Ye, J. and Chen, Y.: A Hierarchical Topology Control Algorithm for WSN, Considering Node Residual Energy and Lightening Cluster Head Burden Based on Affinity Propagation, *Sensors*, Vol. 19, No. 13 (online), DOI: 10.3390/s19132925 (2019).
- [11] Shah, I. K., Maity, T., Dohare, Y. S., Tyagi, D., Rathore, D. and Yadav, D. S.: ICIC: A Dual Mode Intra-Cluster and Inter-Cluster Energy Minimization Approach for Multihop WSN, *IEEE Access*, Vol. 10, pp. 70581–70594 (online), DOI: 10.1109/ACCESS.2022.3188684 (2022).
- [12] Vincze, Z., Vida, R. and Vidacs, A.: Deploying Multiple Sinks in Multi-hop Wireless Sensor Networks, *IEEE International Conference on Pervasive Services*, pp. 55–63 (online), DOI: 10.1109/PERSER.2007.4283889 (2007).
- [13] Priyadarshi, R., Singh, L., Randheer and Singh, A.: A Novel HEED Protocol for Wireless Sensor Networks, 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 296–300 (online), DOI: 10.1109/SPIN.2018.8474286 (2018).