
テクニカルレポート
CDSL Technical Report

Adjusting Deployed Container Number to Reduce

Rolling Update Time

Muhammad Akram1 Miho Tanaka1 Takayuki Kushida1

Abstract：Kubernetes has become fundamental for orchestrating containerized applications, automat-

ing deployment, scaling, and management across clusters. A key strategy in Kubernetes is the rolling

update, which allows updates without downtime by replacing each pod sequentially. The issue faced

is the long time taken for rolling updates to be executed. The proposal is to increase or decrease the

number of pods deployed simultaneously during a rolling update. The rolling update is automated after

inputting the replicas, maxSurge, and maxUnavailable values, by implementing a Python script. The

replicas value sets the number of containers, while the maxSurge and maxUnavailable values sets the

number of pods deployed simultaneously. The Evaluation experiment indicated that a rolling update

of 100 containers was executed, starting with deploying one pod at a time. The number of containers

deployed simultaneously was incremented by 10 sequentially (10, 20, 30, 40, 50, 60, 70, 80, 90) up until

90 containers. The number of pods deployed simultaneously (50 pods) which is half of the number of

containers(100 pods) demonstrates that the rolling update takes up the shortest time which is 89 sec-

onds. The time taken for the rolling update where 50 pods were deployed simultaneously is 89 seconds

compared to where 1 pod was deployed at a time is 133 seconds indicates a decrease of approximately

33% in time taken which is 44 seconds.

1. Introduction

Background

Kubernetes manages applications for developers and

businesses. This open-source platform, functioning as a

conductor for containers, ensures smooth operation across

local servers and the cloud. Management tasks such as

scaling applications up or down based on demand, restart-

ing failed components, and distributing workloads are

handled by Kubernetes. This platform serves as a cru-

cial tool for modern software development [1].

Updates enhance system security and effectiveness.

These updates safeguard applications against security

threats, resolve bugs, and add features that improve us-

ability. Compatibility with newer technologies is main-

tained by these updates, assisting businesses in adapting

to the evolving tech landscape. Updates ensure system

security, reliability, and relevance.

1 Tokyo University of Technology, Department of Computer
Science
1404-1 Katakuracho, Hachioji City, Tokyo 192-0982

Pods serve as the core unit in Kubernetes management.

A pod functions as the smallest unit managed by Kuber-

netes, often described as a small, self-contained environ-

ment where containers coexist. These containers, sharing

resources such as storage and networking, make pods suit-

able for hosting and managing application components [2].

For instance, a pod operates a web server container along-

side a helper container that processes logs. Pods enable

Kubernetes to maintain application efficiency and readi-

ness for scaling or recovery as necessary.

Rolling updates is a feature for application upgrades

in Kubernetes. This strategy updates an application in-

crementally, replacing components sequentially to prevent

downtime. Although this approach keeps the application

operational, rolling updates requires time as each pod un-

dergoes updating, health checking, and removal of the

older version [3]. The objective is to expedite this pro-

cess while ensuring stability and smooth operation.

Main Issue

Rolling updates extends updates completion time. Con-

c⃝ 2024 Cloud and Distributed Systems Laboratory 1



テクニカルレポート
CDSL Technical Report

tainers deploy sequentially in this process, extending the

time required to finalize the update fully.

Figure 1: Rolling Update

Figure 1 illustrates the Kubernetes rolling update pro-

cess. Containers update sequentially, maintaining con-

tinuous application availability and replacing the data in

each container one by one. Initially, the blue container

represents the updated version, followed by deployment of

the green container, the updating version. The green con-

tainer’s old YAML data is retrieved and the data is placed

into a new container, which will become the updated con-

tainer with new YAML data. Once the green container is

fully updated, the process repeats with the yellow contain-

ers, the versions pending update. This gradual replace-

ment of older versions after validation ensures no down-

time, highlighting a primary benefit of rolling updates in

Kubernetes.

2. Related Research

Kubernetes gains prominence in managing large-scale,

containerized applications. Research targets optimization

of deployment and auto-scaling strategies to boost avail-

ability and minimize downtime [4]. The updates has zero

downtime as shown in the study but will cause an elonga-

tion in the time taken for said updates. In comparison to

this paper, the number of containers deployed simultane-

ously will decrease the time taken for the updates while

ensuring that there is also zero downtime.

The study ”A Review of Kubernetes Scheduling and

Load Balancing Methods”, the authors address Kuber-

netes scheduling and load balancing challenges, empha-

sizing resource management to maintain application con-

tinuity [5]. Efficient scheduling and resource allocation are

essential to rolling updates, preventing performance issues

when adding or removing pods. Enhancing these meth-

ods improves rolling update stability and responsiveness.

In comparison to this paper, The resource allocation for

rolling updates are optimised in according to the basic ex-

periment’s and evaluation experiment’s needs accordingly.

The study ”Enhancing Kubernetes Auto-Scaling:

Leveraging Metrics for Improved Workload Performance”

highlights Kubernetes use of real-time metrics for dy-

namic workload management, which benefits rolling

updates by aligning parameters such as maxSurge and

maxUnavailable with demand [6]. In comparison to

this paper, the metrics during the rolling update is

adjusted accordingly to the number of containers. the

number of containers directly affect the maxSurge and

maxUnavailable values.

3. Proposal

To address the time constraints associated with rolling

updates in Kubernetes, an optimized deployment ap-

proach is proposed that dynamically adjusts the number

of containers (pods) to be deployed simultaneously. The

two primary parameters in Kubernetes that govern rolling

updates are maxSurge and maxUnavailable, which dictate

the number of additional and unavailable pods during the

update process, respectively [7]. By tuning these parame-

ters, the speed of the update is controlled while balancing

resource availability and application continuity.

Figure 2: Adjusting number of container deployed in

Rolling Update

Figure 2 demonstrates efficiency gains in deployment

time by increasing simultaneous pod updates. Figure 1

c⃝ 2024 Cloud and Distributed Systems Laboratory 2



テクニカルレポート
CDSL Technical Report

presents a scenario where rolling updates proceed with

only one pod deployed at a time. Figure 2 contrasts this

by depicting two pods deployed simultaneously. Specifi-

cally, when the total container count is four, the number of

containers updated simultaneously is set to half (2). Blue

boxes represent updated containers, green ones are updat-

ing, and yellow boxes indicate containers pending update.

The arrow with the label time shortens in Figure 2 com-

pared to Figure 1, which shows a decrease in time taken

for the rolling update. This configuration underscores the

time efficiency achieved when the system updates more

pods concurrently, handling a larger workload in parallel.

Basic Experiment

Adjustment of maxSurge and maxUnavailable parame-

ters optimizes Kubernetes rolling updates. These settings,

altered in the deployment YAML file’s ”spec” section, con-

trol simultaneous container (pod) deployment. The test

environment includes one master node and two worker

nodes. Depending on the test, the deployment configu-

ration’s replicas field is set to 15, 20, or 25, aligning the

total pod count with these figures.

Values for maxSurge and maxUnavailable range from 1

to 19. For each value, 10 deployment time samples are

recorded, averaging to represent each data point. This

method secures statistically reliable results by captur-

ing variability in deployment times. The application un-

der update is WordPress, a widely-used open-source con-

tent management system facilitating content creation and

management, such as blogs and multimedia. WordPress

has broad application and the critical need for efficient,

continuous updates to preserve website availability and

user experience.

Program 1’s maxSurge parameter enhances update con-

currency by allowing extra pods creation. This parameter

exceeds the set replica count during updates, facilitating

faster updates for smaller images with higher values, such

as 10 or above, and minimizing resource consumption for

larger images with lower values. The maxUnavailable pa-

rameter specifies the allowable number of pods that is of-

fline during updates. Specifically, when the replicas count

is even, maxSurge is set at half; for odd counts,the value

follows the basic Experiment’s results by taking the higher

value. The ”ImagePullPolicy: Always” setting ensures

updates utilize the latest image, preventing outdated ver-

sions from affecting timing accuracy [8].

The rolling update monitoring is conducted using the

kubectl command get pod -w. This kubectl command dis-

Program 1: YAML File ”spec” Cutout

1 spec:

2 replicas: 20

3 selector:

4 matchLabels:

5 app: wordpress

6 tier: frontend

7 strategy:

8 type: RollingUpdate

9 rollingUpdate:

10 maxSurge: 10

11 maxUnavailable: 10

12 template:

13 metadata:

14 labels:

15 app: wordpress

16 tier: frontend

17 spec:

18 containers:

19 - name: wordpress

20 image: wordpress :6.2.1 - apache

21 imagePullPolicy: Always

plays the update progression, sequentially replacing each

pod. The update concludes once all original pods achieve

”Terminating” status. Timing begins with the update ap-

plication and ends when all old pods are replaced [9].

Figure 3: Rolling Update Data when replicas is set to 15

The X-axis on each graph represents the number of pods

deployed simultaneously in a rolling update. The Y-axis

one ach graph represents the time taken for rolling up-

dates. Figure 3 data reveals that deploying 7 pods si-

multaneously is faster than deploying a single container,

saving approximately 16.4 seconds. This represents an ap-

proximately 65% reduction in deployment time. However,

deployment times start to rise again when the number of

c⃝ 2024 Cloud and Distributed Systems Laboratory 3



テクニカルレポート
CDSL Technical Report

Figure 4: Rolling Update Data when replicas is set to 20

Figure 5: Rolling Update Data when replicas is set to 25

pods increases to 14. Figure 4 shows a similar pattern.

Deploying 10 pods simultaneously results in a time sav-

ing of approximately 21.3 seconds, an approximately 67%

reduction compared to deploying a single container. As

with Figure 3, deployment times begin to increase when

the number of pods reaches 19. In Figure 5, the trend

continues with the most optimal deployment occurring at

12 pods, reducing the deployment time by approximately

28.7 seconds, an approximately 77% reduction. Deploy-

ment times start to rise again at 24 pods, aligning with

the other figures. Despite these variations, a consistent

pattern emerges across all figures: the fastest deployment

times occur when the number of simultaneously deployed

pods is approximately half the total replicas. Specifically,

the optimal pod counts are 7-8 for 15 replicas (Figure 3),

10 for 20 replicas (Figure 4), and 12-13 for 25 replicas

(Figure 5). These findings underscore the importance of

configuring maxSurge and maxUnavailable values close to

half the replicas count to optimize rolling update dura-

tions.

Use Case Scenario

A major update to a critical payment processing ser-

vice in a Kubernetes-powered e-commerce platform re-

quires deployment to address security vulnerabilities and

enhance fraud detection. The platform experiences heavy

traffic, causing updates without service interruptions be-

come essential. To achieve this, the update strategy in-

volves tuning parameters such as maxSurge to allow faster

updates and maxUnavailable to maintain service availabil-

ity during the process. Ensuring the shortest possible up-

date duration ensures users maintain easy access to the

e-commerce site.

Figure 6: Rolling Update Scenario

Figure 6 demonstrates uninterrupted operation of e-

commerce sites during rolling updates. Updates are incre-

mentally applied to a subset of containers, enabling the

remaining containers to manage user requests. The blue

containers represent updated pods, the green containers

represent updating pods, and the yellow containers repre-

sent pending pods. Adjusting the number of sequentially

deployed pods reduces the time required for completing

the rolling update.

4. Implementation

Python Code Implementation

The Python code automates WordPress application up-

dates on Kubernetes clusters. This implementation up-

dates the application from version 6.2.1 to version 6.3.1

using rolling updates. The process optimizes updates by

c⃝ 2024 Cloud and Distributed Systems Laboratory 4



テクニカルレポート
CDSL Technical Report

adjusting key parameters, including maxSurge and maxU-

navailable, to control the number of pods deployed simul-

taneously. The script modifies the deployment configura-

tion in the Kubernetes YAML file, applying adjusted val-

ues for maxSurge, maxUnavailable, and replicas to eval-

uate the impact on deployment time and resource con-

sumption.

Figure 7: Python Code Flow

Figure 7 outlines the steps for updating the deployment

YAML file. The process begins with editing the YAML

file to specify the number of replicas, along with maxSurge

and maxUnavailable values, as provided by the user. The

rollupdate.py Python script reads the YAML file, updates

these parameters, and saves the modifications. Once the

configuration is updated, the script applies the new de-

ployment using the kubectl apply command. Following

this, the script monitors the deployment to ensure all pods

reach the ”Running” state, confirming the rolling update

progresses as expected. The script updates the YAML file

from version 6.2.1 to version 6.3.1. The yellow container

represents an outdated YAML file, which is version 6.2.1

and the blue container represents an updated YAML file,

which is version 6.2.1.

Additionally, the script records the time taken for the

rolling update to complete, providing essential data for

this research. The recorded duration serves as the primary

metric for analyzing the efficiency of different configura-

tions. This analysis evaluates how various maxSurge and

maxUnavailable settings impact update speed while bal-

ancing resource utilization. To ensure consistent updates,

the deployment YAML file includes the imagePullPolicy:

Always setting, preventing the use of cached images, as

detailed in Program 1.

Experiment Environment

• Nodes : One master node and two worker nodes

• Application : wordpress:6.2.1-apache to

wordpress:6.3.1-apache

• Software : k3s version v1.25.13+k3s1

• OS : Ubuntu Server 24.04.1 LTS

• vCPU : 1 Core

• RAM : 5 GB

• SSD : 30 GB

The details written above are the environment used for

the Evaluation Experiment. By using one master node

and two worker nodes, the workload of the Virtual Ma-

chine during Rolling updates is distributed to ensure that

the updates are executed smoothly. Apart from that, the

other settings are all in according to the Laboratory’s

usual settings for Virtual Machines, ensuring that the vir-

tual machine runs smoothly without problems.

5. Evaluation

Evaluation Experiment

To assess the impact of varying the number of pods de-

ployed simultaneously during Kubernetes rolling updates,

experiments were conducted with the replicas field set to

100. The number of pods deployed simultaneously was

varied from 1 to 100, with an increment of 10 pods for each

data, and for each configuration, the time taken to com-

plete the rolling update was recorded. One master node

and two worker nodes were used in the setup, and updates

were performed fully without utilizing cache to ensure con-

sistency. All recorded values represent the average of 10

experiments conducted for each configuration. Addition-

ally, system resource metrics, including CPU load, disk

read speed, and disk write speed, were monitored to en-

sure system stability and analyze the effects of increasing

concurrency on resource utilization.

Figure 8 illustrates the relationship between simultane-

ous pod deployment and update duration in Kubernetes

rolling updates. The highest recorded update time is ap-

proximately 133 seconds when deploying only 1 pod at

c⃝ 2024 Cloud and Distributed Systems Laboratory 5



テクニカルレポート
CDSL Technical Report

Figure 8: Evaluation Experiment Rolling Update Graph

a time. Increasing the number of pods deployed simul-

taneously reduces the update duration, reaching the low-

est value of approximately 89 seconds when 50 pods are

deployed concurrently. This result demonstrates that up-

date duration decreases as concurrency increases.

The graph reveals a turning point: after deploying 50

pods simultaneously, update duration begins to rise. For

example, deploying 70 pods takes approximately 91.43

seconds, and deploying 90 pods takes approximately 93

seconds. Although the cause of this increase remains un-

explored, potential factors include metrics such as CPU

usage and disk read speed.

The graph exhibits a U-shaped pattern, with a decrease

in update time as concurrency grows, followed by an in-

crease beyond the optimal configuration. This finding em-

phasizes the importance of balancing deployment speed

and resource utilization to optimize rolling update perfor-

mance.

Analysis of Evaluation Experiment Results

The results indicate that adjusting maxSurge and max-

Unavailable values impacts rolling update times in Kuber-

netes. Increasing these values reduces update durations

by deploying more containers simultaneously. The data

demonstrates that optimal performance occurs when both

maxSurge and maxUnavailable are set to approximately

half the total number of replicas.

The evaluation revealed that setting maxSurge and

maxUnavailable to approximately 50 resulted in the short-

est update time of approximately 89 seconds. Compared

to deploying one pod at a time, which took approximately

133 seconds, this configuration reduced the update time

by approximately 33%. This outcome highlights the effi-

ciency of updating more pods concurrently [10].

This configuration balances deployment speed and re-

source management. Deploying fewer pods simultane-

ously ensures the system handles updates without over-

loading resources [11]. This balanced approach avoids re-

source strain, enabling a smoother and faster rolling up-

date process, which minimizes update times while main-

taining system stability.

6. Discussion

The findings highlight the impact of concurrency on

rolling updates and suggest avenues for future exploration.

One potential research direction involves understanding

why the shortest rolling update times occur when the

number of pods deployed simultaneously approximates

half the container count. This relates to metrics such

as CPU usage and disk read/write speed, potentially in-

fluenced by the number of nodes, as each node exhibits

distinct metrics.

The nodes in the Evaluation Experiment (one master

node and two worker nodes) were distributed across three

separate physical machines. This placement results in dif-

fering metrics and varying efficiency levels among the ma-

chines, which may affect the rolling update process, either

prolonging or shortening the duration. Conducting exper-

iments with all three nodes on the same physical machine,

recording rolling update times, and comparing these re-

sults with those from nodes distributed across different

machines reveal the significance of disk read/write speeds

in determining update times.

Extending the research to larger clusters, particularly

in cloud environments, offers another area for investiga-

tion. Medium-sized clusters were used in the experiments.

Therefore, exploring larger clusters provides insights into

Kubernetes’ behavior under varying resource conditions.

The elastic scalability of cloud resources introduces dy-

namic challenges and opportunities in high-concurrency

rolling updates, offering a more comprehensive under-

standing of the system’s performance.

7. Conclusion

A detailed analysis identifies the benefits of adjusting

container updates for faster and smoother system opera-

tions. Rolling updates provide updates without downtime

and longer durations pose challenges for certain scenar-

ios. Experiments demonstrate that setting maxSurge and

maxUnavailable values to approximately half the replicas

count optimizes update times. The Evaluation Experi-

ment involves a rolling update of approximately 100 con-

tainers, beginning with deploying one pod at a time. Se-

quential increments of approximately 10 containers (10,

c⃝ 2024 Cloud and Distributed Systems Laboratory 6



テクニカルレポート
CDSL Technical Report

20, 30, 40, 50, 60, 70, 80, 90) increase the number of

containers updated simultaneously. Deploying approxi-

mately 50 pods, half the total container count, results

in the shortest update time of approximately 89 seconds.

Deploying one pod at a time, taking approximately 133

seconds, shows a reduction of approximately 33% which

is 44 seconds compared to deploying 50 pods simultane-

ously. The Evaluation Experiment findings indicates that

setting maxSurge and maxUnavailable values to 50 when

replicas are set to 100. This configuration balances speed

and resource usage, achieving the most efficient update

times for the specific deployment setup.

References

[1] Méndez, S.: Edge Computing Systems with Kubernetes:
A use case guide for building edge systems using K3s,
k3OS, and open source cloud native technologies (2022).

[2] Mondal, S. K., Zheng, Z. and Cheng, Y.: On the Op-
timization of Kubernetes toward the Enhancement of
Cloud Computing, Mathematics, Vol. 12, No. 16 (on-
line), DOI: 10.3390/math12162476 (2024).

[3] Laukka, L., Fransson, C. and Pappas, N.: Load Bal-
ancing Traffic Among Kubernetes Replicas by Uti-
lizing Workload Estimation, 2023 IEEE Conference
on Standards for Communications and Network-
ing (CSCN), pp. 353–356 (online), DOI: 10.1109/C-
SCN60443.2023.10453145 (2023).

[4] Saleh, A. and Karslioglu, M.: Kubernetes in Produc-
tion Best Practices: Build and manage highly available
production-ready Kubernetes clusters (2021).

[5] Sun, Y., Xiang, H., Ye, Q., Yang, J., Xian, M. and
Wang, H.: A Review of Kubernetes Scheduling and Load
Balancing Methods, 2023 4th International Conference
on Information Science, Parallel and Distributed Sys-
tems (ISPDS), pp. 284–290 (online), DOI: 10.1109/IS-
PDS58840.2023.10235497 (2023).

[6] Joyce, J. E. and Sebastian, S.: Enhancing Kubernetes
Auto-Scaling: Leveraging Metrics for Improved Work-
load Performance, 2023 Global Conference on Informa-
tion Technologies and Communications (GCITC), pp.
1–7 (online), DOI: 10.1109/GCITC60406.2023.10426170
(2023).

[7] Malhotra, A., Elsayed, A., Torres, R. and Venkatraman,
S.: Evaluate Canary Deployment Techniques Using Ku-
bernetes, Istio, and Liquibase for Cloud Native Enter-
prise Applications to Achieve Zero Downtime for Con-
tinuous Deployments, IEEE Access, Vol. 12, pp. 87883–
87899 (online), DOI: 10.1109/ACCESS.2024.3416087
(2024).

[8] Sayfan, G. and Ibryam, B.: Mastering Kubernetes: Dive
into Kubernetes and learn how to create and operate
world-class cloud-native systems (2023).

[9] Hasan, B. T. and Abdullah, D. B.: Real-Time
Resource Monitoring Framework in a Heteroge-
neous Kubernetes Cluster, 2022 Muthanna Inter-
national Conference on Engineering Science and
Technology (MICEST), pp. 184–189 (online), DOI:
10.1109/MICEST54286.2022.9790264 (2022).

[10] Abirami, T., Vasuki, C., Jayadharshini, P. and Vignesh-
waran, R. R.: Monitoring and Alerting for Horizontal

Auto-Scaling Pods in Kubernetes Using Prome Theus,
2023 International Conference on Computer Science
and Emerging Technologies (CSET), pp. 1–8 (online),
DOI: 10.1109/CSET58993.2023.10346811 (2023).

[11] Reddy, Y. S. D., Reddy, P. S., Ganesan, N. and
Thangaraju, B.: Performance Study of Kuber-
netes Cluster Deployed on Openstack,VMs and
BareMetal, 2022 IEEE International Conference
on Electronics, Computing and Communication
Technologies (CONECCT), pp. 1–5 (online), DOI:
10.1109/CONECCT55679.2022.9865718 (2022).

c⃝ 2024 Cloud and Distributed Systems Laboratory 7


