# バッテリー残量と接続可能ノード数をもとにしたクラスター ヘッドの決定によるノード稼働時間の均一化

筒井優貴1 大沢恭平2 串田 高幸1

概要:農場では温度や湿度の情報を取得するために IoT デバイスが利用されている. IoT デバイスは電源 に接続されて稼働しているデバイスとバッテリーに接続されて稼働しているデバイスが存在する. マルチ ホップネットワークでは IoT デバイスがデータの中継を行う. データの中継を行うデバイスはデータの中 継を行わないデバイスと比較してバッテリーの消費量が多い. 課題は,中継を行うデバイスのバッテリー が枯渇すると中継を必要とするデバイスが孤立する点である. 本稿では,バッテリー残量と接続可能ノー ド数をもとにクラスターヘッドを決定する手法を提案する. 評価実験では提案方式と LEACH のノードの 稼働時間を測定した. 提案方式で wb を 0.8, wb を 0.2 に設定することで,最も稼働時間が短いノードの 稼働時間は 6585[s],最も稼働時間が長いノードの稼働時間は 7235[s] となり,その差は 650[s] となった. 各ノードの稼働時間の平均は 6902[s] であった. 一方,LEACH は最も稼働時間が短いノードの稼働時間は 6275[s],最も稼働時間が長いノードの稼働時間は 7290[s] となり,その差は 1015[s] となった. 各ノードの 稼働時間の平均は, 6842[s] であった. よって,提案方式は LEACH と比較して各ノードの平均稼働時間 がこれにより,提案手法を使用することで,LEACH と比較して,平均稼働時間が約 1[%] 延長した.提案 方式の最も稼働時間が長いノードと最も稼働時間が短いノードの稼働時間の差は,LEACH の約 64[%] に なった.

# 1. はじめに

# 背景

Internet of Things(IoT) はヘルスケア, スマートシティ, 工業, 輸送で利用されている [1,2]. 農業では, 土壌の状 態や大気の状態を知るために IoT デバイスが利用されて いる [3]. 農場のデータを収集する際には, マルチホップ ネットワークが使用されている [4]. マルチホップネット ワークとはセンサーを搭載した小型で軽量な無線ノードの 分散ネットワークである [5]. マルチホップネットワーク のノードは, 温度や湿度の収集, 処理, 他のノードとの通 信を行うことができる [6,7]. マルチホップネットワーク のノードは, 処理能力, メモリ, エネルギー資源が制限さ れている [8]. センサーのエネルギーが枯渇すると, セン サーは動作することができなくなる [9]. センサーノード は, 配置される環境によっては, バッテリーの交換や充電 は困難となる [10,11]. そのため, センサーノードは長期間 稼働することが求められる [12].

マルチホップネットワークでノードをクラスタリングす ると、スケーラビリティの向上、エネルギー効率の向上、 ルーティング遅延の低減ができる [13]. 各クラスターでは、 クラスターヘッドと呼ばれるノードが、クラスター内のク ラスターメンバーと呼ばれるノードからデータの収集と送 信を行う [14,15]. クラスターヘッドは、クラスターメン バーからデータを収集し、転送する役割があるため、クラ スターメンバーと比較して多くの電力を消費する [16].

#### 課題

課題は、クラスターヘッドのバッテリー残量が枯渇する ことによって、孤立ノードが発生することである.図1に 課題の概要を示す.クラスターメンバーとクラスターヘッ ドは温度データを取得している.クラスターメンバーはク ラスターヘッドを介してサーバーにデータを送信している. クラスターヘッドは、クラスターメンバーと比較してバッ テリーを多く消費する.そのため、クラスターメンバーよ りも先にクラスターヘッドのバッテリーが枯渇する.クラ スターヘッドのバッテリーが枯渇すると、クラスターメン バーはバッテリーが残っていてもデータをサーバーに送信 することが不可能になる.

東京工科大学コンピュータサイエンス学部
 〒192–0982 東京都八王子市片倉町1404-1

<sup>&</sup>lt;sup>2</sup> 東京工科大学大学院バイオ・情報メディア研究科コンピュータサ イエンス専攻 〒 192-0982 東京都八王子市片倉町 1404-1



図1 クラスターヘッドのバッテリーが枯渇した状態

# 各章の概要

第2章では関連研究について記述する.第3章では提案 方式,ユースケース・シナリオについて記述する.第4章 では実装について記述する.第5章では評価実験について 記述する.第6章では議論について記述する.第7章では 本稿のまとめを記述する.

# 2. 関連研究

消費電力の均一化を目的としてクラスターヘッドをラン ダムに選択する LEACH(Low Energy Adaptive Clustering Hierarchy) というアルゴリズムが存在する [17]. しかし, LEACH はクラスターヘッドがランダムに選択されるため, クラスターヘッドの選出に偏りが発生する場合がある. ク ラスターヘッドの選出に偏りが発生すると, ノードの消 費電力を完全に均一にすることはできない. その結果, 一 部のノードに負荷が集中し, バッテリーが早期に枯渇す る [18].

HEED はノードの残エネルギーと通信距離をもとにクラ スターヘッドを決定するプロトコルである. このプロトコ ルは,シングルホップネットワークを前提としているため, マルチホップネットワークで利用することができない [19].

エネルギー消費効率予測をもとにクラスタリングとルー ティングを行うアルゴリズムが存在する [20]. このプロト コルは,ノード間の距離やノードのバッテリー残量をもと にクラスタリングを行い,通信時の消費電力をもとにルー ティングを行う.しかし,このプロトコルは実験環境がシ ミュレーションであり,現実での実験が行われていない.

# 3. 提案

本稿では、ノードのバッテリー残量を均一化し、ノードの 稼働時間を延長することを目的とする. そのために、バッ テリー残量と接続可能ノード数をもとにクラスターヘッド を決定する.提案方式の処理の流れを示したシーケンス図 を図 2 に示す.



提案方式を以下の4段階に分けて説明する.

- バッテリー残量, ノード数取得
- 正規化
- 各ノードの類似度計算
- クラスターヘッドの決定

#### 3.1 バッテリー残量,接続可能ノード数取得

クラスターヘッド候補ノードは,バッテリー残量と接続 可能ノード数をクラスターヘッドに対して送信する.図3 にバッテリー残量と接続可能ノード数を取得する様子を 示す.



図3 バッテリー残量,接続可能ノード数を取得

## 3.2 正規化

各ノードから取得したバッテリー残量をクラスターヘッドは (1) の式で正規化する.

$$b_{normalized} = \frac{b_{collect} - b_{min}}{b_{max} - b_{min}} \tag{1}$$

 $b_{collect}$  は各ノードから取得したバッテリー残量, $b_{min}$  は 全ノードのバッテリー残量の最小値, $b_{max}$  は全ノードの バッテリー残量の最大値である.

各ノードから取得した接続可能ノード数をクラスター ヘッドは (2) の式で正規化する.

$$n_{normalized} = \frac{n_{collect} - n_{min}}{n_{max} - n_{min}} \tag{2}$$

n<sub>collect</sub> は各ノードから取得した接続可能ノード数, n<sub>min</sub> は全ノードの接続可能ノード数の最小値, n<sub>max</sub> は全ノー ドの接続可能ノード数の最大値である.

#### 3.3 各ノードの類似度計算

各ノードのバッテリー残量と接続可能ノード数とクラス ターヘッドのバッテリー残量と接続可能ノード数の類似度 を計算する.計算は式(3)で行われる.

$$score = \sqrt{(w_b * (b_i - b_j))^2 + (w_n * (n_i - n_j))^2} \quad (3)$$

ここで、 $b_i$ は式 (1) で正規化された現在のクラスター ヘッドのバッテリー残量、 $b_j$ は式 (1) で正規化されたクラ スターヘッド候補ノードのバッテリー残量、 $n_i$ は式 (2) で 正規化されたクラスターヘッドの接続可能ノード数、 $n_j$ は 式 (2) で正規化されたクラスターヘッド候補ノードの接続 可能ノード数である. $w_b$ 、はバッテリー残量の重み、 $w_n$ は接続可能ノード数の重みである.

#### 3.4 クラスターヘッドの決定

式 (3) でスコアが最も低いノードが次のクラスターヘッ ドとなる.次のクラスターヘッドが決定したら全てのクラ スターメンバーに対して現在のクラスターヘッドが次のク ラスターヘッドを通知する.図4に次のクラスターヘッド を通知する様子を示す.

#### ユースケース・シナリオ

本提案は, 農場の状態の取得に使用されることを想定している. 農場では, 温度や湿度を取得するために, IoT デバイスが利用されている. 図5にユースケースを示す.

図5は農場でデータを取得し、マルチホップでサーバー にデータを送信している.本稿の提案方式を使用すること で、ノードのバッテリー消費量が均一化され、孤立ノード の発生を抑えることができる.

# 4. 実装

IoT デバイスとして ESP32 を使用する. MicroPython







で実装する.電流計として INA219 を使用する.通信方式 にはソケット通信を使用する.図6はソフトウェア概要図 である.クラスターメンバーはバッテリー残量と接続可能 台数をクラスターヘッドに送信する.クラスターヘッドは 送信されたバッテリー残量と接続可能ノード数をもとに次 のクラスターヘッドを決定する.次のクラスターヘッドが 決定されたら現在のクラスターヘッドはクラスターメン バーに対して次のクラスターヘッドを通知する.

# 5. 評価実験

各ノードのバッテリー残量が枯渇するまでの時間を計測 する.式(3)の $w_b$ , $w_n$ の値を0.1から0.9の範囲で0.1ず つ変動させ、各重みでのバッテリー残量が枯渇するまでの 時間を計測した.また、LEACHでクラスターヘッドを動



図6 ソフトウェア概要図

的に変更した場合のバッテリー残量が枯渇するまでの時間 の計測も行った.

#### 実験環境

IoT デバイスとして5台の ESP32, 電流計として INA219 を使用して実験を行う. バッテリー容量は 200[mAh] であ る. 提案ソフトウェアと LEACH の実装は MicroPython で行った.

## 実験結果と分析

図 7 は  $w_b \& 0.1, w_n \& 0.9$  に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである. 最も 稼働時間が短かったのは ID5 のノードで 4965[s],最も稼 働時間が長かったのは ID2 のノードで 7715[s] であった. 全ノードの稼働時間の平均は 6990[s] であった.



図 8 は  $w_b$  を 0.2,  $w_n$  を 0.8 に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである. 最も 稼働時間が短かったのは ID5 のノードで 5740[s],最も稼 働時間が長かったのは ID2 のノードで 7245[s] であった. 全ノードの稼働時間の平均は 6682[s] であった.

図 9 は  $w_b$  を 0.3,  $w_n$  を 0.7 に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである.最も



稼働時間が短かったのは ID5 のノードで 6230[s],最も稼 働時間が長かったのは ID2 のノードで 7050[s] であった. 全ノードの稼働時間の平均は 6692[s] であった.



図 10 は  $w_b \& 0.4, w_n \& 0.6$  に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである. 最も 稼働時間が短かったのは ID5 のノードで 5910[s],最も稼 働時間が長かったのは ID1 のノードで 7300[s] であった. 全ノードの稼働時間の平均は 6747[s] であった.



図 11 は  $w_b \& 0.5$ ,  $w_n \& 0.5$  に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである. 最も 稼働時間が短かったのは ID1 のノードで 6085[s],最も稼 働時間が長かったのは ID5 のノードで 8025[s] であった. 全ノードの稼働時間の平均は 7231[s] であった.

図 12 は  $w_b \& 0.6, w_n \& 0.4$  に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである. 最も 稼働時間が短かったのは ID4 のノードで 6190[s],最も稼 働時間が長かったのは ID1 のノードで 7705[s] であった. 全ノードの稼働時間の平均は 6918[s] であった.

図 13 は  $w_b$  を 0.7,  $w_n$  を 0.3 に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである.最も



稼働時間が短かったのは ID5 のノードで 6370[s],最も稼 働時間が長かったのは ID2 のノードで 7170[s] であった. 全ノードの稼働時間の平均は 6794[s] であった.



図 14 は  $w_b$  を 0.8,  $w_n$  を 0.2 に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである. 最も 稼働時間が短かったのは ID5 のノードで 6585[s],最も稼 働時間が長かったのは ID2 のノードで 7235[s] であった. 全ノードの稼働時間の平均は 6902[s] であった.



図 15 は  $w_b \epsilon 0.9$ ,  $w_n \epsilon 0.1$  に設定した場合の各ノード の稼働時間とバッテリー残量を示したグラフである.最も 稼働時間が短かったのは ID3 のノードで 6390[s],最も稼 働時間が長かったのは ID1 のノードで 7295[s] であった. 全ノードの稼働時間の平均は 6749[s] であった.



図 16 は LEACH で動的にクラスターヘッドを選択した 場合の各ノードの稼働時間とバッテリー残量を示したグ ラフである.最も稼働時間が短かったのは ID4 のノード で 6275[s],最も稼働時間が長かったのは ID2 のノードで 7290[s] であった.全ノードの稼働時間の平均は 6842[s] で あった.



表1は各条件でのノード稼働時間の平均値,最大値,最 小値をまとめたものである. 表の赤いセルは各条件のうち 最も値が低かったものであり,表の水色のセルは最も値が 高かったものである. 平均値が最も大きくなったのは wb, w<sub>n</sub> をそれぞれ 0.5 に設定した場合で 7231[s] であった. 平 均値が最も小さくなったのは wb を 0.2, wn を 0.8 に設定し た場合で 6682[s] であった.最大値が最も大きくなったの は w<sub>b</sub>, w<sub>n</sub> をそれぞれ 0.5 に設定した場合で 8025[s] であっ た. 最大値が最も小さくなったのは $w_b$ を0.3,  $w_n$ を0.7 に設定した場合で 7050[s] であった. 最小値が最も大きく なったのは w<sub>b</sub> を 0.8,w<sub>n</sub> を 0.2 に設定した場合で 6585[s] であった.最小値が最も小さくなったのは w<sub>b</sub> を 0.1,w<sub>n</sub> を 0.9 に設定した場合で 4965[s] であった. 最大値と最小値 の差が最も大きくなったのは wb を 0.1, wn を 0.9 に設定 した場合で 2750[s] であった.最大値と最小値の差が最も 小さくなったのは $w_b$ を0.8, $w_n$ を0.2に設定した場合で 650[s] であった. これらの結果から, wb の値が大きいと各 ノードの稼働時間の差が小さくなり, w<sub>n</sub>の値が大きいと 各ノードの稼働時間の差が大きくなることがわかった. ま た、一つのノードのバッテリーを集中的に使用したほうが、 全ノードの稼働時間の平均は長くなることが分かった.本 稿の目的は、各ノードのバッテリー消費量を均一化するこ

とであるため、 $w_b \in 0.8, w_n \in 0.2$ に設定することが最も 適している.

| 表1 各条件下でのノード稼働時間の平均,最大,最小 |        |        |        |
|---------------------------|--------|--------|--------|
| 条件                        | 平均 [s] | 最大 [s] | 最小 [s] |
| $w_b = 0.1, w_n = 0.9$    | 6990   | 7715   | 4965   |
| $w_b = 0.2, w_n = 0.8$    | 6682   | 7245   | 5740   |
| $w_b = 0.3, w_n = 0.7$    | 6692   | 7050   | 6230   |
| $w_b = 0.4, w_n = 0.6$    | 6747   | 7300   | 5910   |
| $w_b = 0.5, w_n = 0.5$    | 7231   | 8025   | 6085   |
| $w_b = 0.6, w_n = 0.4$    | 6918   | 7705   | 6190   |
| $w_b = 0.7, w_n = 0.3$    | 6794   | 7170   | 6370   |
| $w_b = 0.8, w_n = 0.2$    | 6902   | 7235   | 6585   |
| $w_b = 0.9, w_n = 0.1$    | 6749   | 7295   | 6390   |
| LEACH                     | 6842   | 7290   | 6275   |

#### **6**. 議論

本稿では、バッテリー残量と接続可能ノード数をもとに クラスターヘッドを動的に変更することで、各ノードの バッテリー消費を均一化する手法を提案した.しかし,条 件によっては、バッテリー消費量を均一化することが適切 であるとは限らない. 例えば、クラスターメンバーが1台 のクラスターヘッドとクラスターメンバーが10台のクラ スターヘッドが存在した場合、クラスターメンバーが10 台存在するクラスターヘッドのほうが重要である. そのた め、クラスターメンバーが少ないノードのバッテリーを優 先的に使用することで、クラスターメンバーが多いノード のバッテリーをより長く使用できるようにすることで、よ り多くのデータをより長い時間取得することができるよう になる.

#### おわりに 7.

本稿では、バッテリー残量と接続可能ノード数をもとに クラスターヘッドを動的に変更する手法を提案した.課題 は、クラスターヘッドのバッテリー残量が枯渇することに よって孤立ノードが発生することである.評価実験では提 案方式と LEACH のノードの稼働時間を測定した.提案方 式で wb を 0.8, wb を 0.2 に設定することで、最も稼働時 間が短いノードの稼働時間は 6585[s],最も稼働時間が長 いノードの稼働時間は 7235[s] となり, その差は 650[s] と なった. 各ノードの稼働時間の平均は 6902[s] であった. 一方, LEACH は最も稼働時間が短いノードの稼働時間は 6275[s], 最も稼働時間が長いノードの稼働時間は 7290[s] となり、その差は1015[s]となった. 各ノードの稼働時間の 平均は, 6842[s] であった.よって,提案方式は LEACH と 比較して各ノードの平均稼働時間がこれにより、提案手法 を使用することで、LEACH と比較して、平均稼働時間が 約1[%] 延長した.提案方式の最も稼働時間が長いノード

と最も稼働時間が短いノードの稼働時間の差は、LEACH の約 64[%] になった.

## 参考文献

- [1]Haras, M. and Skotnicki, T.: Thermoelectricity for IoT-A review, Nano Energy, Vol. 54, pp. 461–476 (2018).
- [2]Gokhale, P., Bhat, O. and Bhat, S.: Introduction to IOT, International Advanced Research Journal in Science. Engineering and Technology, Vol. 5, No. 1, pp. 41-44 (2018).
- [3]Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A. and Nillaor, P.: IoT and agriculture data analysis for smart farm, Computers and electronics in agriculture, Vol. 156, pp. 467-474 (2019).
- [4]Martinelli, M., Ioriatti, L., Viani, F., Benedetti, M. and Massa, A.: A WSN-based solution for precision farm purposes, 2009 IEEE International Geoscience and Remote Sensing Symposium, Vol. 5, IEEE, pp. V-469 (2009).
- [5]Anisi, M. H., Abdul-Salaam, G. and Abdullah, A. H.: A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture, Precision Agriculture, Vol. 16, pp. 216-238 (2015).
- Zhu, H., Li, S., Zheng, L. and Yang, L.: Modeling and [6]validation on path loss of WSN in pig breeding farm, Transactions of the Chinese Society of Agricultural Engineering, Vol. 33, No. 2, pp. 205–212 (2017).
- [7]Sharma, S., Bansal, R. K. and Bansal, S.: Issues and challenges in wireless sensor networks, 2013 international conference on machine intelligence and research advancement, IEEE, pp. 58-62 (2013).
- [8] Wang, Y., Attebury, G. and Ramamurthy, B.: A survey of security issues in wireless sensor networks (2006).
- Seah, W. K., Eu, Z. A. and Tan, H.-P.: Wireless [9] sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges, 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Ieee, pp. 1–5 (2009).
- Rezaei, Z. and Mobininejad, S.: Energy saving in wire-[10]less sensor networks, International Journal of Computer Science and Engineering Survey, Vol. 3, No. 1, p. 23 (2012).
- [11] Chan, L., Gomez Chavez, K., Rudolph, H. and Hourani, A.: Hierarchical routing protocols for wireless sensor network: A compressive survey, Wireless Networks, Vol. 26, pp. 3291-3314 (2020).
- [12] Kausar, A. Z., Reza, A. W., Saleh, M. U. and Ramiah, H.: Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches, Renewable and Sustainable Energy Reviews, Vol. 38, pp. 973-989 (2014).
- [13]Afsar, M. M. and Tayarani-N, M.-H.: Clustering in sensor networks: A literature survey, Journal of Network and Computer applications, Vol. 46, pp. 198–226 (2014).
- [14]Wohwe Sambo, D., Yenke, B. O., Förster, A. and Dayang, P.: Optimized clustering algorithms for large wireless sensor networks: A review, Sensors, Vol. 19, No. 2, p. 322 (2019).
- [15]Sasikumar, P. and Khara, S.: K-means clustering in wireless sensor networks, 2012 Fourth international conference on computational intelligence and communica-

tion networks, IEEE, pp. 140–144 (2012).

- [16] Izadi, D., Abawajy, J. and Ghanavati, S.: An alternative clustering scheme in WSN, *IEEE sensors journal*, Vol. 15, No. 7, pp. 4148–4155 (2015).
- [17] Omari, M. and Laroui, S.: Simulation, comparison and analysis of wireless sensor networks protocols: LEACH, LEACH-C, LEACH-1R, and HEED, 2015 4th International Conference on Electrical Engineering (ICEE), IEEE, pp. 1–5 (2015).
- [18] Song, L., Song, Q., Ye, J. and Chen, Y.: A hierarchical topology control algorithm for WSN, considering node residual energy and lightening cluster head burden based on affinity propagation, *Sensors*, Vol. 19, No. 13, p. 2925 (2019).
- [19] Younis, O. and Fahmy, S.: HEED: a hybrid, energyefficient, distributed clustering approach for ad hoc sensor networks, *IEEE Transactions on mobile computing*, Vol. 3, No. 4, pp. 366–379 (2004).
- [20] Zhang, D.-g., Wang, X., Song, X.-d., Zhang, T. and Zhu, Y.-n.: A new clustering routing method based on PECE for WSN, *EURASIP Journal on Wireless Communications and Networking*, Vol. 2015, pp. 1–13 (2015).