
テクニカルレポート
CDSL Technical Report

CPU resource co-op model using container metrics

on microservice

Takamasa Iijima1 Takayuki Kushida1

概要：Cloud applications such as Electronic Commerce sites have scalability. Microservice architecture is

one of the architectures to make cloud applications. There is an increase in CPU usage due to the rapid

increase in request rates in microservices. The method of adding an existing node adds a new node even

though there is unused CPU on the existing node. When the request rate increases rapidly, the response

time delay is caused by the addition of new nodes. This paper propose a CPU resource co-op model to

reduce the frequency of node addition by improving the efficiency of CPU usage on existing nodes in

order to maintain the response time when the request rate increases rapidly. The effect of request rate

on CPU usage is examined by calculating the linear correlation between request rate and CPU usage for

multiple microservices, and the microservices with the highest linear correlation values are selected for

load balancing. Response time of requests generated based on the access logs of the article search service

when accessed are evaluated at each request rate of 100[req/s] (the steady state) and 500[req/s] (the

spike). Current scaling method requires about 50 seconds to recover from the response time of about

120[ms] at the time of a spike to about 35[ms] at the steady state, while the proposed method can recover

in about 15 seconds. This proposal scaling method is 57.1% faster then kubernetes autoscalar method.

1. Introduction

Background

Users like smartphone users, TV listeners and PC users

can upload own media to public internet ownself in 2022.

Compare with legacy One-Way massmedia like radio sta-

tion, TV stations migrate to new style. User Generated

Contents(UGC) (e.g. Youtube, Twiiter and facebook)

market is growing.

When users use these webservices, in actual they acceess

to server to process their requests. Server architecure at

cloud computing has two method. Monolitic Architecture

and Micro Service Artchitecture(MSA). Monolitic archi-

tecture has integrated one code base for deloying service.

On the other hands MSA has splited code base depends on

developing groups. This paper use website as most simple

example for cloud services. Website can’t estimate num-

ber of requests will increase when massmedia introduce

website like closeup TV program, news. Website have to

increase number of server for increase number to respond

to user at single time. MSA has mechanism named scale.

1 Tokyo University of Technology, Tokyo, Japan

MSA, which divides the code base into different func-

tions and allows for a high frequency of collaboration be-

tween business functions and development teams[1]. In

the context of the use of cloud services, there is an expec-

tation to flexibly adjust resources to dynamically changing

traffic with as little human intervention as possible[2].

However, in the microservices used in cloud applica-

tions, in order to ensure scalability, it was necessary to

explicitly formulate the specifications of each pod from

the resources of each microservice, here the CPU usage.

In the case of microservices, code base of each service

is independent of each other, and therefore, the container

resources cannot be used in different ways. In conven-

tional research and in the introduction of microservices

in cloud applications, the priorities of services need to be

predefined by humans. Therefore, human operations are

also required for resource allocation in nodes.

Therefore, cloud applications at this stage need a mech-

anism to solve microservices issues. Cloud architecture

using microservice has issues shows below. When the con-

tainer has a ”requests” parameter configuration of CPU

threshold for scaling trigger, it cause waste for node CPUs.

c⃝ 2022 Cloud and Distributed Systems Laboratory 1

テクニカルレポート
CDSL Technical Report

When operator reduce ”requests” value, container scale

more dynamically. For instance operator configure thou-

sand milicore as one container can process thousand re-

quests per seconds (req/s). When operator reduce service

”requests” value to ten milicore as one container, it can

process 10 (req/s). Operator can prevent surplus provi-

sioning of service when an access under the 10 (req/s).

However when cloud application receive more than 10

(req/s) for example if receive requests as 100 (req/s), a

container scale ten times. It makes ten times container

creation delay and cause of network traffic jam.

Therefore, operator should take care of modify ”re-

quests” parameter. This operator also should have

heavy understanding about modify ”requests” and what

it makes for cloud application.

Issue

When operator use default autoscaler, autoscaler deploy

new application pod in current node. When cpu capacity

of current node has no more free cpu resources, autoscaler

add new node. Figure 1 shows current autoscale usecase.

Issue is autoscaler add new node without consider other

container free space.

Fig. 1 Current scale method

2. References

In task scheduling by prioritizing queues in the cloud,

tasks in the cloud environment are divided into queues

and priorities are assigned to the queues using GA (Ge-

netic Algorithm) [3]. This method calculated the priority

of the tasks in a strict cloud environment. However, when

this method is applied to microservices, it is difficult to

schedule tasks according to this model because each func-

tion is connected to the network.

In Min-Min scheduling algorithm with user priority

guide for load balancing in cloud computing, the Min-

Min scheduling algorithm is used to prioritize the avail-

able resources per user over the resources of the whole

cloud (i.e., cluster) for load balancing of cluster resources

such as CPU, memory, etc. in the whole cloud which has

many heterogeneous environments. The Min-Min schedul-

ing algorithm is used to prioritize the resources that can

be used per user over the resources of the entire cloud

(henceforth, the cluster) [4].This method can manage re-

sources by user unit in clusters, and in many cases by

company or group unit. However, this method still has

problems when functions are highly intercommunicated

through networks such as microservices. In addition, this

method allows users to manually teach the system a pri-

ority level called VIP level, which enables load balancing

considering the priority of each task. However, in the case

of microservices, where the number of tasks and services

increases exponentially, these priorities should be set au-

tomatically.

Online Machine Learning for Cloud Resource Provision-

ing in Microservice Backend Systems proposes a method

to scale microservice-specific applications [5]. In this pro-

posal, machine learning is used to properly provision and

scale each service. However, as they state in their dis-

cussion, they currently use only one metric, CPU usage.

Therefore, they are not able to deal with databases where

storage bandwidth usage is more valuable than CPU us-

age as a metric.

3. Proposal method

This paper propose a method to maintain the response

time when the request rate increases rapidly by increasing

the efficiency of CPU usage on existing nodes, reducing

the frequency of node additions, and using another mi-

croservice compatible with the program on the same node

to perform processing on behalf of the node. The proposal

consists of the following five steps.

(1) Selection of high-impact metrics in the application

(2) Calculation of priorities in microservices

(3) Measuring the similarity between two different mi-

croservices

(4) Execution of programs in other services by sharing

programs

(5) Load balancing functionality by redirecting to other

services

c⃝ 2022 Cloud and Distributed Systems Laboratory 2

テクニカルレポート
CDSL Technical Report

Algorithm 1 Sort metricś value order by request rate
Input:

ML:List which contain kind of metrics

R:Hashmap which contain (Time t(time t): request

rate(req rate))

M :Hashmap which contain all of

Hashmap(Time(time t):Value of each metrics)

Output: I:Hashmap which contain

Hashmap((reqests rate):metrics) in each metrics

1: function Metrics mapping by req rate(ML,R,M)

2: ▷ Value of metrics and request rate pair

3: ▷ with time which container in R

4: for all time t, req rate← R do

5: for all metrics←ML do

6: I.insert(metrics, {req rate : M [metrics][time t]})
7: end for

8: end for

9: return I

3.1 Selection of Highly Influential Metrics in the

Application

First, identify which metrics in the application are af-

fected by the request rate. In this paper, the two metrics

to be obtained and used are CPU usage and RAM usage

in this paper. This ranks the metrics that are most af-

fected when the application experiences a spike in request

rate. We obtain the CPU usage, RAM usage, and the

time at which the metrics are obtained for each microser-

vice on a node every second. Based on this information,

we map the request rate to the CPU usage and RAM us-

age for each microservice. Table 1 below shows a table of

the metrics (CPU usage) available from the microservices

and their mapping to each request rate.

Time

(s)

CPU Usage

(milicore)

Request rate

([req/s])

1 1400 100

2 700 300

3 110 150

4 400 600

5 1000 140

Table 1 Get metrics each seconds.

Algorithm 1 is the process of linking multiple metrics

obtained from microservices to their respective request

rates using the time time time t from which the metrics

and request rates were obtained.

2 The type of metrics as input, e.g., CPU usage,

RAM usage as input, ML which is a list of metrics,

e.g. CPU usage, RAM usage, R which is a hash

map of time on the system and request rate, and M

which is a hash map of time on the system and val-

ues of each metric. The output is a hash map I con-

taining the request rate measured for each metric and

the metrics obtained at the same time. The func-

tion METRICS MAPPING BY REQ RATE first re-

trieves from R the time time t and the request rate

req rate for each element of R. Then, for each metric,

TIMET is used as a key, and the values obtained for each

request rate metric from M are inserted into I. Table 2

below shows a table of metrics (CPU usage) mapped by

request rate.

Request rate

([req/s])

CPU Usage

(milicore)

100 1400

140 1000

150 110

300 700

600 400

Table 2 Get metrics each requestrate.

Ranking of metrics by calculating correlation coeffi-

cients and regression lines Algorithm 2 uses I obtained

in Algorithm 1 to calculate the importance of metrics in

each microservice using correlation coefficients and regres-

sion lines from multiple metrics in each microservice and

stores them in a list PoM . Then, sort the list in ascend-

ing order based on the calculated importance and create

a final list PoM Final that is the final priority of each

microservice metric.

2

The input is a list I containing the values of met-

rics for each request rate created in Algorithm 1. The

output is a list PoM Final containing the priorities of

microservice metrics in ascending order. The function

SELECT METRICS in the first line is described be-

low. 3 and 4 lines recursively retrieve the request rate for

each metric from I as a key and the value of each metric

as a value. The set of request rates during the processing

of each metric is denoted by x and the set of values of the

metric by y. The correlation coefficient ρ is calculated for

each metric and request rate using x and y.

ρ =
cov(X,Y)

σxσy
(1)

This study of monitoring whitepaper and cloud metrics

states that correlation coefficients below 0.8 should be ig-

nored in order to obtain only strong correlations using the

correlation coefficients.[6],[7]. We perform the same clas-

sification as previous studies that artificially classified cor-

relation coefficients into five levels and consider ρ2 equal to

or greater than 0.64 as correlated and insert them into the

correlation metrics list PoM . The PoM created here is

c⃝ 2022 Cloud and Distributed Systems Laboratory 3

テクニカルレポート
CDSL Technical Report

Algorithm 2 Calculate metric rankings within each mi-

croservice
Input:

I:List containing the values of metrics per request rate cre-

ated in Algorithm 1

Output: PoM Final:Ranked list of importance of metrics

1: function select metrics(I)

2: ▷ Calculate the correlation coefficient with the request

rate for each metric

3: for all metrics← I do

4: for all req rate,metrics value← metrics do

5: x(array)← req rate

6: y(array)← metrics value

7: ▷ Calculate the correlation coefficient

8: ρ = (1)

9: ▷ Correlation coefficients with a square of 0.64

10: ▷ or greater are considered valid correlations

11: if ρ2 > 0.64 then

12: ▷ Calculate the regression line

13: r = (2)

14: PoM.insert([metrics, r])

15: end if

16: end for

17: end for

18:

19: function get metrics rank(PoM)

20: PoM Final = {}
21: max = 0

22: for all metrics, r value, index← PoM Final do

23: if PoM Final.Length()is0 then

24: PoM Final.insert([metrics, r value])

25: elseselected metrics r > r value

PoM Final[index− 1].insert([metrics, r value])

26: end if

27: end for

28: return PoM Final

used to execute the GET METRICS RANK function.

The GET METRICS RANK function sorts the metrics

stored in PoM in order of the slope of the regression line.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

This sorting ranks the metrics by the degree to which

their values affect the request rate. 3 points are awarded

for first place, 2 points for second place, 1 point for third

place, and so on. Points based on this ranking are later

used to prioritize metrics across microservices.

As soon as all microservices have ranked their metrics,

we add up the points of those that have been ranked, rank

the names of the metrics that affect the request rate in the

application, and multiply the correlation coefficient of the

1 ranked metric by the average request rate of each mi-

croservice since the application started. The correlation

coefficient of the first ranked metric is multiplied by the

average request rate of each microservice since the start

.

Fig. 2 ranking metrics across applications

of the application.

3.2 similarity measurement of two different mi-

croservices

In order to calculate the priorities in microservices, this

paper compare the similarities between two microservices

using the layers of the containers to find the containers

that can help each other in the aforementioned priorities.

The goal here is to compare the containers that make

up the two microservices so that it can be determined

whether or not it is possible to take over the processing

of the parts of the program that are interchangeable.

container layer comparison

When the container images are the same for different

services, they can be processed on behalf of each other

without sharing code or programs. Each container is as-

signed an ID. If the container ID is the same for all strings,

the processing can be done on behalf of the container.

However, in a production environment, since each devel-

oper executes his own source code and programs, it is un-

likely that the IDs are the same for all containers. Here,

this paper will focus on the layers that make up a con-

tainer (hereinafter called container layers). The container

layer separates the read-only image part of a container

image from the read-write image part, so that the OS

and kernel parts are common, and the developer’s origi-

nal source code can overwrite the image.

3.3 Execution of other microservice programs by

sharing source code or programs

If the layers other than the user’s original source code

section are the same, it is highly likely that the program

can be executed by sharing the source code or program.

The method of sharing source code and programs is de-

c⃝ 2022 Cloud and Distributed Systems Laboratory 4

テクニカルレポート
CDSL Technical Report

scribed in the next chapter.

In addition, if the layers other than the user’s original

source code part are the same, this paper will perform a

verification to improve the accuracy of the similarity. This

paper compare the source files of the programs with the

user’s original source code in a text-based format.

3.4 Load balancing function by redirecting to

other services

Based on the results of searching similar microservices,

copy the program file from the microservice with the high-

est priority to the microservice with the lowest priority.

After that, a load balancer is installed in the pod to which

the program copy is sent to distribute the load.

After that, requests are redirected from the higher pri-

ority to the lower priority.

Fig. 3 Improves node CPU utilization by using unused CPUs

within the same node

use-case scenario

As a use case scenario, this paper can confirm the ef-

fective utilization of resources and the acceleration of re-

sponse time by using PoS in doktor, an article search site

consisting of multiple microservices.

Doktor has two microservices. Suppose that a foreign

researcher focuses on doktor, and the traffic increases

rapidly. Then, the pdf service will be waiting for scale.

In this paper, this paper propose PoS and program shar-

ing to make the best use of the extra resources in the

cluster.

Fig. 4 Usecase

4. Implementation

As an experimental environment, we created a portal

site of the thesis as an actual cloud service. In the exper-

iment, we introduce the Mutual Aid Assistance Instance

System to this service.

The environment in which this proposal is used is as-

sumed to be based on a service mesh. All traffic in the

microservice is monitored through Envoy, and metrics are

obtained using datadog.

To simulate user requests, we send GET requests to a

microservice built from Locust, a testing tool, in this case

a payment service. When the payment service is accessed

intensively and the CPU utilization exceeds a threshold,

in this case 90

PoS-Calc measures the similarity between the services

and checks if the program of another microservice can be

executed. Here is an example of a cloud application I de-

veloped that mimics an article search site. We focus on

the following two different services.

• Article search service A microservice processed by

Python that displays articles according to the re-

quests received by the API.

• Article submission service A microservice that stores

uploaded article files in storage. It is processed by

Python.

This section describes how these two services compare

commands and improve the accuracy of similarity. In Fig-

ure 6 below, we assume that the code executed by the ar-

ticle search service and the article submission service are

all identical when compared with the history command.

In other words, all commands used in the program are

identical. Therefore, we can say that these two containers

have a high possibility of execution by sharing source code

and programs. they have a high degree of similarity.

c⃝ 2022 Cloud and Distributed Systems Laboratory 5

テクニカルレポート
CDSL Technical Report

Fig. 5 Ex:Co-op Available

5. Experiments

experimental environment

As an experimental environment, this paper have cre-

ated a portal site for our thesis as an actual cloud service.

In the experiment, this paper introduce a mutual aid as-

sistance instance system into this service.

This paper assume that a service mesh is used as the

premise of the environment for using this proposal. This

paper assume that all traffic in the microservices is mon-

itored via Envoy, and that metrics can be obtained using

datadog.

The configuration table of these services is shown in Ta-

ble 2 below. These services are composed of the following

microservices (denoted as µS in the figure).

5.1 Building a Kubernetes cluster

First, install ESXi on the machine in table 3 as a virtual

environment for creating node VMs.

CPU AMD Ryzen 3950X

RAM 128GB

SSD NVMe 2TB

NIC Intel 1Gbps

Table 3 Spec: ESXi Server

Next, to build a Kubernetes cluster, we built three

nodes with the specifications shown in the following table

The OS used was microk8s, which comes with Kubernetes

and Docker modules preinstalled by default.

5.2 Implementation of each service

The experiment was performed on a Kubernetes system

with the following architecture.

• Python/Locust: Tool to automatically send requests

CPU 4vCPU

RAM 16GB

Storage 200GB

OS Ubuntu 20.04

Table 4 Spec: each node

as a substitute for users and API users

• Flask(Scalable max3): Paper search Service

• Flask(Scalable max3):Paper upload Service

Set up a replica for each service, deploy a Kubernetes

Service that performs load balancing, and access each Ku-

bernetes Service. Table 2 below shows a schematic dia-

gram of the experiments in this paper. To simulate user

requests, we send GET requests to a microservice built

from Locust, a testing tool, in this case, the search ser-

vice. When the search service is accessed intensively and

the CPU utilization exceeds a threshold value, in this

case 90%, PoS-LB fires an event to the gateway API and

changes the state of the gateway API so that the request

to the search service is sent to PoS-LB once. Thereafter,

requests for the search service are forwarded through PoS-

LB to the search service and the article submission service

that provides the resources.

Figure 7 below shows a diagram of the experimental

configuration created based on the above configuration.

Fig. 6 Diagram of the Experiment

In this section, this paper calculates the expected num-

ber of accesses for the service used in this experiment.

IEEE, the most famous academic society in the world,

has about 5 million documents on IEEE Xplore, its paper

search site. It also says that 25,000 documents are added

every month. Assuming that each paper has a co-author,

at least the author, and the co-author should access the

website and check it. Therefore, this paper assumes that

the number of accesses to the search portal is at least

twice as many as the number of documents uploaded per

month. In this case, 25,000 documents have been up-

loaded, so 50,000 is the base number of users browsing

c⃝ 2022 Cloud and Distributed Systems Laboratory 6

テクニカルレポート
CDSL Technical Report

the portal each month. This translates to 0.019 requests

per second. (50000/30(monthly)*24(hours)*3600(minutes

and seconds)=0.019). In addition to this, if the confer-

ence was held every week, there is a possibility that users

who attended the conference would view the papers. At

the IEEE CCEM conference I attended, there were about

150 participants. If a user did this every week, an ad-

ditional 600 people would be using the search portal for

papers. Also, let’s assume that the person who uploads

a paper reads the references in the paper (in this paper,

assumes about 20 references). In addition to that, for

papers with more than 10 citations, this paper sets the

number of monthly views to 2000. The reason for this

is that the number of monthly views has been hovering

around 2000 in the example of the IEEE metrics explana-

tion site. Therefore in this paper define the average page

view access rate to 386.22 request per second. Access rate

of upload service is 0.009 request per second. It is almost

once every 34 minutes.

evaluation method As an evaluation, we prepared an

API in an environment where two microservices are run-

ning and accessed it according to the following request

rate conditions. We compare the response times of the

existing method and the proposed method when scale-out

occurs. In this experiment, the constant request rate was

set to 100 [req/s], and the peak request rate was set to

500 [req/s]. The target requests were limited to POST

requests to the Web server. The experiment time was 180

seconds for the node utilization calculation experiment,

and 100 [req/s] was sent for 60 seconds to remove un-

necessary spikes when the first request was sent to the

service, and the experiment was conducted from a stable

state. After 60 seconds, the request rate was increased to

500 [req/s] to simulate an increase in requests. Each ser-

vice was assumed to be able to run only one pod on each

node, requiring expansion of another node when scaling

out. The auto-scale threshold was set at 80The number

of trials was set to 50 and 1000 to minimize measurement

variability.

6. Evaluation

This figure shows the relationship between the CPU

and the calculated PoS value.

The above ranking is also used to check whether CPUs

are efficiently allocated among the nodes. In this study, we

compared the existing and proposed methods by adding

up the amount of CPUs in all nodes as the total CPU

usage.

The response time from the API is compared before and

after the introduction of this research model. It is assumed

that the response time for services with high PoS will not

increase compared to conventional clusters, even if there

is a rapid increase in requests. During this experiment,

the response times of services with low PoS will also be

checked and discussed. We will also confirm that the fre-

quency of node additions decreases as cluster utilization

becomes more efficient.

7. Evaluation

Efficient use of nodes when PoS system is deployed Fig-

ure 9 shows the CPU utilization on the nodes prepared

from the beginning of the experiment. The blue line shows

the CPU utilization of the nodes with the stock Kuber-

netes autoscale, and the red line shows the CPU utiliza-

tion of the nodes resulting from the implementation of our

PoS system.

Fig. 7 CPU utilization measured at the first node in the two

methods

During the first 60 seconds of the evaluation, requests

reached the service at 100 [req/s], indicating that there

was almost no difference between the two systems until 60

seconds. After that, Kubernetes’ autoscaling functional-

ity is activated, resulting in a significant drop in CPU uti-

lization at around 70 seconds. The decrease in CPU uti-

lization here is due to the fact that Kubernetes deployed

the same service on a different node and distributed the

load, and at 70 seconds, the system was scaling at a stage

where about 10 percent of CPU utilization remained, in-

dicating that the node resources were not being used up

effectively. In comparison, the PoS system was deployed

at 70 seconds, and the original service was no longer able

to process all the requests, so the load was distributed

to similar containers, which used the CPU utilization to

c⃝ 2022 Cloud and Distributed Systems Laboratory 7

テクニカルレポート
CDSL Technical Report

the maximum extent before scaling. In this respect, the

PoS system proposed in this study contributes to highly

efficient utilization of the node for about 40 seconds com-

pared to the Kubernetes autoscaler.

However, the CPU utilization after 130 seconds is not as

low as that of the Kubernetes auto-scaler, even though the

system is scaling. This is because the number of requests

received by the system is higher when the PoS system

scales to another node as a result of exhausting the sys-

tem’s resources to the limit, and when Kubernetes scales

with room to spare.

Figure 10 shows a line graph of cumulative CPU usage

when deploying up to a maximum of three nodes.

Fig. 8 Total CPU usage on all nodes

The shaded areas indicate areas where the PoS system

reduces CPU utilization more than the existing Kuber-

netes Scaling. Figure 11 shows the CPU utilization of the

first node when the number of trials is increased to 1000.

Fig. 9 CPU utilization of the first node when the number of

attempts is set to 1000

Even when the number of trials is increased, the exist-

ing method and the proposed method significantly reduce

CPU utilization by adding a new node at about 70 seconds

from the start of the experiment. The difference between

the timing of node addition by the existing method and

the proposed method is 39.6 seconds on average, and this

difference is expected to increase as the number of com-

patible microservices in the same application increases.

Maintaining response time when PoS system is deployed

Figure 13 shows the response time of the Kubernetes au-

toscaler when the request rate is increased from the start

of the request, or when the PoS system’s co-op process is

started.

Fig. 10 Maintain response time when using PoS system

When the request rate increased from 100 [req/s] to 500

[req/s] after 60 seconds, the response time increased dra-

matically for both systems. However, when the PoS sys-

tem was used, the load was distributed among the services

in about 10 seconds and the response time decreased as

the request rate approached 100 [req/s], while the Kuber-

netes autoscaler showed a dramatic increase in response

time due to the time lag before the service was deployed

on a new node. In contrast, the Kubernetes autoscaler

showed a difference of up to 75 [ms] from the time when

the PoS system started helping, which is about 40 seconds

due to the time lag before the service is deployed to new

nodes.

The following figure 12 shows Total CPU usage which

testtime set to 1000. It can be seen that even when the

number of trials is increased, the proposed method adds

nodes less frequently than the existing methods.

Generally, a website is accessed rapidly immediately af-

ter the service is launched. Here, we simulate that 10

times as many requests are made in the first 10 seconds

as in the steady state. Figure 13 reproduces a situation

where the request rate is higher than the steady state for

a certain period of time after a sudden increase in requests

for a service with a steady state of 100[req/s].

Figure 13 shows that the scaling method using PoS-Calc

c⃝ 2022 Cloud and Distributed Systems Laboratory 8

テクニカルレポート
CDSL Technical Report

Fig. 11 Total CPU usage when the number of trials is set to

1000

Fig. 12 Simulation peak

is faster than the existing auto-scale method in terms of

response time recovery. This contributes to maintaining

response time for large scale accesses compared to conven-

tional methods.Proposed method spikes after 30 seconds

is that the node has been added because the processing

limit of the existing node has been exceeded.

7.1 Discussions

This proposal does not implement the timing for termi-

nating the assist container when the number of requests

processed decreases. The assist container should be ter-

minated when the number of user accesses decreases, how-

ever since the number of user accesses and the metrics of

the container are always variable, it is necessary to deter-

mine on the basis of which interval metrics the container

should be terminated. In this case, the range of metrics to

be acquired can be experimentally increased from 1 second

(the shortest acquisition frequency) to 1 day or 1 week,

and the scaling method can be made leaner by predicting

the actual user accesses based on these models.

8. Conclusions

In this paper, we have considered the issue of increasing

response time when scaling with additional nodes when

adopting a MSA. We measured the response time of re-

quests generated based on the access logs of the article

search service when accessed at the request rate of 100[re-

q/s] (steady state) and 500[req/s] (rapid increase), respec-

tively. The existing method requires about 50 seconds

to recover from the response time of about 120[ms] at

the time of a spike to about 50[ms] at the steady state,

whereas the proposed method can recover in about 10

seconds. In this study, we proposed a mechanism to auto-

matically calculate priorities from running microservices.

The proposed mechanism can suppress the response time

delay when add nodes.

References

[1] Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M.,
Mustafin, R. and Safina, L.: Microservices: How to
make your application scale, International Andrei Ershov
Memorial Conference on Perspectives of System Infor-
matics, Springer, pp. 95–104 (2017).

[2] Lehrig, S., Eikerling, H. and Becker, S.: Scalability, elas-
ticity, and efficiency in cloud computing: A systematic
literature review of definitions and metrics, Proceedings
of the 11th International ACM SIGSOFT Conference
on Quality of Software Architectures, pp. 83–92 (2015).

[3] Keshanchi, B., Souri, A. and Navimipour, N. J.: An im-
proved genetic algorithm for task scheduling in the cloud
environments using the priority queues: formal verifica-
tion, simulation, and statistical testing, Journal of Sys-
tems and Software, Vol. 124, pp. 1–21 (2017).

[4] Chen, H., Wang, F., Helian, N. and Akanmu, G.:
User-priority guided Min-Min scheduling algorithm for
load balancing in cloud computing, 2013 National Con-
ference on Parallel Computing Technologies (PAR-
COMPTECH), pp. 1–8 (online), DOI: 10.1109/Par-
CompTech.2013.6621389 (2013).

[5] Alipour, H. and Liu, Y.: Online machine learning for
cloud resource provisioning of microservice backend sys-
tems, 2017 IEEE International Conference on Big Data
(Big Data), pp. 2433–2441 (online), DOI: 10.1109/Big-
Data.2017.8258201 (2017).

[6] Evans, J. D.: Straightforward statistics for the behavioral
sciences., Thomson Brooks/Cole Publishing Co (1996).

[7] Wang, T., Xu, J., Zhang, W., Gu, Z. and
Zhong, H.: Self-adaptive cloud monitoring with on-
line anomaly detection, Future Generation Com-
puter Systems, Vol. 80, pp. 89–101 (online), DOI:
https://doi.org/10.1016/j.future.2017.09.067 (2018).

c⃝ 2022 Cloud and Distributed Systems Laboratory 9

